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Abstract

Power prices are well known to have a fat-tailed probability distribution func-

tion. These fat tails represent the probability of sudden high and low prices

that occur as a result of sudden changes in supply, partly due to intermittent

renewable power generation, and/or in demand due to inelastic short-term de-

mand and the absence of sufficient storage capacity.

In addition to the consensus view in the literature, that the level of inter-

mittent renewable power supply has an effect on power prices and volatility, we

show that the level of wind and solar supply has an effect on the fatness of the

tail of empirical power price distributions. The more wind and solar supply, the

fatter the tails of the left side of the distribution function and the thinner the

tails on the right side.

From our empirical findings on the tail asymmetry in the distribution of elec-

tricity prices, we conclude that the power system has higher need for downward

than for upward power system flexibility during times with high share of inter-

mittent renewable energy in the power system and the opposite during times

with low share of intermittent renewable energy in the power system. A better

understanding of the need for power system flexibility is the first step before

actually adopting new measures and designing/updating the energy policy in
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the market.

Keywords: Intermittent supply, fat tails, renewables, flexibility, power prices.

1. Introduction

Electricity markets have experienced important structural changes over the

past few decades. During this period of time, many countries liberalised their

electricity sector and set the path to the creation of competitive power markets.

On top of that, these markets changed because of the ever increasing share of

intermittent renewable energy generation (wind and solar) in the power genera-

tion mix. The shift towards an increasing share of intermittent power generation

has a significant impact on power prices and increases the need for flexibility

in the power supply. A better understanding of the impact that intermittent

generation has on electricity prices can help both managers and policy makers

in taking better long- and short- term decisions in operating in and respectively

designing electricity markets in terms of increased power system flexibility.

Focusing on the German power market Kyritsis et al. (2017) show that both

solar and wind power influence the probability distribution function of power

prices by inducing a merit order effect being that power prices decline when

the share of renewables in the power system increases. Würzburg et al. (2013)

present a list of 20 articles (of which 9 focus on the German electricity prices)

that all show this same result.1 Kyritsis et al. (2017), Tveten et al. (2013)

and Ketterer (2014) went further by examining how changes in intermittent

renewable supply affect the volatility of power prices. Kyritsis et al. (2017)

show that wind and solar have a different impact on the volatility of electricity

prices: wind power generation increases volatility and the probability of spikes

occurring in the electricity prices; solar power generation decreases the electric-

ity price volatility and probability of having electricity price spikes. The same

1More recent papers that yield the same conclusion are among others Dillig et al. (2016),

Ketterer (2014), Tveten et al. (2013) and Paraschiv et al. (2014).

2



relation between wind and volatility of electricity prices was exhibited in Ket-

terer (2014) and between solar and volatility of electricity prices in Tveten et al.

(2013).

The clear view from the literature is that power prices decline as a result

of an increase in renewable intermittent supply and that the volatility of power

prices changes as a result of changes in solar and wind supply. This view moti-

vated us to further examine the impact of intermittent supply on the probability

distribution function of power prices. We question whether increasing the share

of intermittent supply might also affect the tails of power price distribution

functions, since tails of electricity prices are closely related to power system

flexibility which is the key challenge towards the integration of large-scale re-

newable energy sources.

In the literature so far there is not a consensus view on the relation between

wind and solar supply and the tails of the power price distribution functions.

Evidence comes from papers that marginally touch on the link between extreme

electricity prices and intermittent supply. For instance Paraschiv et al. (2014)

do not find conclusive evidence for the case of solar supply but, their results

show that upward price spikes occur mostly when wind supply is low. LeBaron

and Samanta (2005) show, by comparing the tail fatness of empirical power dis-

tribution functions between emerging and developed economies, that one of the

factors that influences the distribution of electricity prices is the difference is

the level of penetration of intermittent energy generators. Lindstrom and Reg-

land (2012) study five European electricity markets and use a regime switching

model and find a positive relation between the frequency of extreme price events

and the share of renewables used in power production suggesting that renewable

supply increases the tail fatness of the electricity prices. In contrast Paraschiv

et al. (2015) find, by applying an AR-GARCH model on EPEX day-ahead mar-

ket data, that heaviness of tails is reduced between 2008 and 2014. Even if the

authors do not make a strong claim, they suggest that their results might be
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influenced by an increasing share of renewables (specifically wind) in the gener-

ation mix.

As Kyritsis et al. (2017) demonstrate the difference between the impact of

wind and solar supply on volatility, we question whether their result would also

hold for the tail fatness of power distribution functions. This paper contributes

to the literature by extending Kyritsis et al. (2017). We examine, using their

data and methodology, the impact that the penetration of intermittent renew-

ables in the German power supply mix has on the tails of German electricity

prices empirical distribution functions. Understanding this further completes

the picture of how changes in the intermittent renewable supply affect changes

in the power price distribution function.

The following parts of the paper are structured as follows. Section 2 presents

the methodology and the data that we used. Section 3 introduces the results of

the analysis and provides a discussion on the implication of the results. Section

4 concludes the article.

2. Methodology and data

As stated previously, our goal is to extend Kyritsis et al. (2017) by examining

how wind and solar supply not only affect the standard deviation (volatility) of

the empirical power price distribution, but also the tails. Due to price inelastic

demand and non storability, power prices exhibit mean reversion, high volatility

and frequent upward and downward price spikes. As a consequence the price

distribution function of power prices is non-normal and exhibits fat tails. This is

shown by for example Byström (2005), Chan and Philip Gray (2006), Walls and

Zhang (2005), Huisman and Huurman (2003), and Herrera and González (2014)

who apply extreme value theory (EVT) to investigate the behaviour of extreme

electricity prices. None of the aforementioned papers focus on a direct link be-

tween the probability and magnitude of extreme prices and the fundamentals of
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the electricity markets (generation mix, storability, expected demand, available

supply etc.). Paraschiv et al. (2014) is one of the papers that calls for giving

more importance to fundamentals when analysing electricity prices suggesting

that stochastic models often include too simplistic assumptions. With our paper

we endeavor to examine the relationship between the probability and magnitude

of extreme electricity prices and wind and solar supply using EVT. In addition

we argue that changes in intermittent renewable supply might have a different

effect on the right side of the (empirical) electricity price distribution than on

the left side. In the literature there is yet mixed evidence for this tail fatness

asymmetry, with no general consensus among researchers. Frestad et al. (2010)

do not find enough evidence to suggest tail fatness asymmetry in the Nordic

Electricity Swap Market. On the opposite, the results of González-Pedraz et al.

(2014) suggest that positive price spikes are more frequent in electricity prices

than drops, thus indicating tail asymmetry.

We follow Kyritsis et al. (2017) and use the same data as they use. It consists

of German day-ahead spot electricity prices from 1st of January 2010 to 30th of

June 2015. This timeframe consists of a period of rapid and large-scale integra-

tion of renewables, period for which we know that wind and solar supply explain

changes in electricity price standard deviation. The German power market is

an interesting case, not only due to the large share of intermittent renewables,

but also due to its large share of inflexible base-load power generation. This

is in contrary to other countries with more flexible power generation, such as

Norway with it vast available hydropower supply.

From this data we create samples containing the average daily prices, aver-

age prices during off-peak hours and average prices during peak hours. For the

average daily price we use Phelix Day Base data that measures the daily prices

based on the average of over the 24 hourly prices of the day; for peak hour prices

we use the Phelix Day Peak prices that are based on the average hourly prices

for the hours 9-20; the off-peak hour prices are calculated based on the average
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prices for the 21-8 hours. Through this separation between peak and off-peak

hours, it is possible to observe the magnitude of the impact of wind and solar

penetration on the German electricity prices when demand is high and when

demand is low.

To separate between different levels of penetration of wind and solar in the

total electricity generated, we follow the methodology of Kyritsis et al. (2017)

and Nicolosi (2010) using actual power generation data for the total, wind and

solar output. However, their sampling method creates too many categories and

too small samples to draw conclusions from. Therefore we adjust their sampling

method to create equally sized sub-samples, which are large enough to measure

the tail-index estimtes from.2

To differentiate between left and right tail of the distribution of electricity

prices, we place the values below the median into the left tail observations and

the values above the median into the right tail observations.

Table 1, Table 2 and Table 3 present the wind, solar and intermittent sub-

samples and the number of observations in them. The intermittent subsamples

are formed by adding together the wind and solar outputs. By examining the

left and right tails of the empirical distribution function using the samples as

shown in the tables mentione before, we are able to observe the impact of wind

and solar power for different levels of wind and solar penetration and the impact

of demand on the tails. For instance, the sub-sample with low wind penetration

(low wind; between 0.4% and 4.9% share in production) has 334 observations

for measuring the left tail. By comparing the tail index estimates for the differ-

ent samples we can observe the difference in the tail index for periods with low

and high wind penetration, low and high solar penetration and low and high

intermittent penetration in combination with low (off-peak) and high (peak) de-

2Using the sampling method of Kyritsis et al. (2017) initially we obtained similar qualitative

results as that we discuss later.
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mand. Additionally, we can observe at each level of wind, solar or intermittent

output penetration level the tail index differences between the right and the left

tail of electricity distribution functions.

Table 1: Number of observations by wind output level

Wind in total system All hours Peak hours Offpeak hours

Left Both Right Left Both Right Left Both Right

Low Wind 0.4-4.9% 334 669 334 334 669 334 334 669 334

Med Wind 4.9-11.1% 334 669 334 334 669 334 334 669 334

High Wind 11.2-50.6% 334 669 334 334 669 334 334 669 334

Table 2: Number of observations by solar output level

Solar in total system All hours Peak hours Offpeak hours

Left Both Right Left Both Right Left Both Right

Low Solar 0-2.2% 334 669 334 334 669 334 333 669 334

Med Solar 2.2-6.7% 334 669 334 334 669 334 334 669 334

High Solar 6.7-20.9% 333 669 334 334 669 334 334 669 334

Table 3: Number of observations by intermittent output level

Intermittent in total system All hours Peak hours Offpeak hours

Left Both Right Left Both Right Left Both Right

Low Intermittent 0.5-10.5% 334 669 334 334 669 334 334 669 333

Med Intermittent 10.5-17.4% 333 669 334 334 669 334 334 669 334

High Intermittent 17.4-52.2% 334 669 333 334 669 334 334 669 334

To observe the fatness of the tails, we calculate the tail index. Fat-tailed

distributions are probability distributions whose tails do not exhibit exponential

decay such as the normal distribution. Instead they have fatter tails. A fat-

tailed distribution is a distribution for which the probability density function

follows the power law x−1/γ for large observations of x. The parameter γ is the

tail-index. The higher γ is, the fatter the tail, i.e. the slower the probability

density function decays to zero. This definition is good for the purpose of this

paper, but for a more general discussion we refer to for instance Huisman et al.

(2001) and to Paraschiv et al. (2015) which are more recent and applied studies
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to power prices. The tail-index is a measure of tail fatness.

To estimate the tail index we use the methodology suggested by Huisman

et al. (2001). They present a variation of the Hill tail index estimator that is

more robust when used with small samples. Since our set of observations per

sample is relatively small we believe that the Huisman et al. (2001) method-

ology is appropriate. As with the Hill estimator, the Huisman et al. (2001)

estimator requires the researchers to determine where the tails of the empirical

distribution functions start. We rely on Paraschiv et al. (2015) which offers

an in depth investigation on the thresholds to be used for German electricity

prices. They show that tail index stays relatively stable between selecting the

biggest/smallest 10% and 15% of the observations. Besides the 10% and 15%

thresholds, we also investigate the tail index at 20% threshold driven by the

small sample used.

3. Results

Table 4 presents the tail index estimates for the different wind penetration

sub-samples at the right tail, left tail and also at both tails combined. Moreover,

in this table it can be observed the t-values for the difference between the right

tail and the left tail of electricity price distribution function. For instance the

top left estimate in Table 4 of 0.08 represents the tail-index estimate for the

left tail of the empirical distribution function when there is a low penetration of

wind supply when we assume that 10% of all observations in the sub-sample are

tail observations. When we compare this estimate with the tail-index estimate

for the right tail of the empirical distribution function at low wind penetration

and 10% considered threshold, being 0.29, we can see that the right tail is sta-

tistically significantly fatter than the left one (t-value of -20.67). In contrast,

when we look at the high wind penetration samples, the opposite result is ob-

served: the left tail of the distribution function (tail-index estimate of 0.42) is
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significantly fatter than the right one (tail-index estimate of 0.04) (t-value of

53.53).

Table 4: Difference in left vs. right tail index estimate by wind output level

Wind Selected All hours Peak hours Offpeak hours

category threshold Left Both Right Left Both Right Left Both Right

tail at 10% 0,08 0,13 0,29 0,04 0,15 0,29 0,06 0,11 0,12

se at 10% 0,010 0,001 0,000 0,011 0,000 0,000 0,006 0,016 0,003

(t-statistic) (-20,67***) (-21,33***) (-10,1***)

Low Wind tail at 15% 0,09 0,2 0,27 0,08 0,17 0,31 0,11 0,14 0,13

(0.4-4.9%) se at 15% 0,042 0,003 0,002 0,013 0,008 0,001 0,012 0,018 0,024

(t-statistic) (-4,25***) (-17,76***) (-0,95)

tail at 20% 0,15 0,22 0,27 0,12 0,18 0,29 0,14 0,14 0,11

se at 20% 0,008 0,059 0,008 0,036 0,023 0,006 0,016 0,010 0,014

(t-statistic) (-10,29***) (-4,56***) (1,16)

tail at 10% 0,13 0,23 0,32 0,13 0,22 0,35 0,11 0,15 0,21

se at 10% 0,002 0,000 0,000 0,002 0,000 0,000 0,008 0,001 0,000

(t-statistic) (-114,35***) (-124,06***) (-12,29***)

Med Wind tail at 15% 0,13 0,18 0,26 0,08 0,19 0,35 0,11 0,14 0,16

(4.9-11.1%) se at 15% 0,021 0,006 0,002 0,007 0,004 0,001 0,046 0,038 0,041

(t-statistic) (-5,99***) (-39,93***) (-0,73)

tail at 20% 0,11 0,17 0,25 0,08 0,19 0,33 0,14 0,12 0,15

se at 20% 0,007 0,022 0,012 0,010 0,014 0,004 0,019 0,242 0,037

(t-statistic) (-10,83***) (-24,21***) (-0,41)

tail at 10% 0,42 0,37 0,04 0,31 0,26 0,08 0,64 0,47 0,03

se at 10% 0,000 0,000 0,007 0,000 0,000 0,014 0,000 0,000 0,008

(t-statistic) (53,54***) (15,79***) (77,16***)

High Wind tail at 15% 0,37 0,29 0,02 0,26 0,22 0,09 0,53 0,36 0,05

(11.2-50.6%) se at 15% 0,001 0,001 0,009 0,002 0,002 0,007 0,001 0,001 0,010

(t-statistic) (36,82***) (26,12***) (46,06***)

tail at 20% 0,35 0,25 0,03 0,24 0,21 0,07 0,47 0,32 0,06

se at 20% 0,003 0,009 0,011 0,018 0,029 0,015 0,002 0,003 0,011

(t-statistic) (28,34***) (7,1***) (35,49***)

Significant at p***<0,01, p**<0,05, p*<0,1; tail = tail index estimate; se = standard errors

Table 5 shows the differences between tail-index estimates for the high and

low wind penetration sub-samples at the right tail, left tail and also at both tails

combined. The results show that the tail-index estimates for the sub-samples

with high wind penetration are statistically significantly different from the esti-

mates for the low wind penetration sub-samples both when we look at the left
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tail and at the right tail of electricity price distribution. If we take the a similar

example as above, looking at estimates for the left tail for all hours, we can see

that the tail-index estimate for the high wind sub-sample (0.42) is higher than

the one calculated for the low wind sub-sample (0.08) at 10% tail observations

threshold. The difference between the two estimates between these estimates is

significant with a t-value of 32.48.

Table 5: Difference in high vs low wind output tail index at left and right tail

Selected Selected All hours Peak hours Offpeak hours

tail threshold High Low High Low High Low

tail at 10% 0,42 0,08 0,31 0,04 0,64 0,06

se at 10% 0,000 0,010 0,000 0,011 0,000 0,006

(t-statistic) (32,48***) (23,37***) (96,26***)

tail at 15% 0,37 0,09 0,26 0,08 0,53 0,11

Left tail se at 15% 0,001 0,042 0,002 0,013 0,001 0,012

(t-statistic) (6,69***) (14,16***) (35,8***)

tail at 20% 0,35 0,15 0,24 0,12 0,47 0,14

se at 20% 0,003 0,008 0,018 0,036 0,002 0,016

(t-statistic) (23,67***) (2,89***) (21,04***)

tail at 10% 0,37 0,13 0,26 0,15 0,47 0,11

se at 10% 0,000 0,001 0,000 0,000 0,000 0,016

(t-statistic) (199,28***) (227,88***) (23,23***)

tail at 15% 0,29 0,20 0,22 0,17 0,36 0,14

Both tails se at 15% 0,001 0,003 0,002 0,008 0,001 0,018

(t-statistic) (29,16***) (5,81***) (12,66***)

tail at 20% 0,25 0,22 0,21 0,18 0,32 0,14

se at 20% 0,009 0,059 0,029 0,023 0,003 0,010

(t-statistic) (0,5) (0,6) (17,13***)

tail at 10% 0,04 0,29 0,08 0,29 0,03 0,12

se at 10% 0,007 0,000 0,014 0,000 0,008 0,003

(t-statistic) (-35,87***) (-14,15***) (-11,1***)

tail at 15% 0,02 0,27 0,09 0,31 0,05 0,13

Right tail se at 15% 0,009 0,002 0,007 0,001 0,010 0,024

(t-statistic) (-25,73***) (-33,16***) (-3,03***)

tail at 20% 0,03 0,27 0,07 0,29 0,06 0,11

se at 20% 0,011 0,008 0,015 0,006 0,011 0,014

(t-statistic) (-17,63***) (-13,5***) (-2,99***)

Significant at p***<0,01, p**<0,05, p*<0,1; tail = tail index estimate; se = standard errors
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From these results exhibited in Table 4 and Table 5 we can see that the left

tail of the electricity price distribution becomes fatter (higher tail-index esti-

mates) and that the right the tail of the electricity price distribution becomes

thinner (lower tail-index estimates) when the share of wind in the production

mix increases. These results hold regardless of the number of tail observations

chosen (being either 10, 15 or 20%).3 We observe this effect when we look at

all hours, peak hours and off-peak hours but, the magnitude of the effect is

different in each case.

The highest impact of wind on the left tail of the electricity price distribution

happens in the off-peak hours when demand is on average low. In such times,

high inflow of wind in the power systems appears to increase greatly the proba-

bility of having low extreme prices. This can be explained by lack of flexibility

to ramp down production from the marginal producers (coal power plants). In

peak hours, the level of wind output also seems to increase the left tail fatness

but with a much lower impact. A plausible explanation for this effect is the

fact that during peak hours, on average, demand is high and also the marginal

producers (gas power plants) are more flexible to cut their production levels.

Clearly wind penetration influences the left tail of the empirical distribution

function of power prices.

On the right tail, the level of wind output has the opposite effect on the tail

fatness of the electricity prices. The more wind is supplied, the thinner the right

tail of the electricity prices. On the right tail, the effect is more pronounced in

the peak hours where the absence of wind increases significantly the tail-index

estimates and, consequently, the probability of having high extreme electricity

prices. This result means that the absence of wind in periods of high demand

(peak hours) is impacting much more the marginal price than in periods with

low demand (offpeak hours). This phenomenon can be explained by the fact

3Plotting Hill estimates for thresholds up to 30% of the observations indicate similar results
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that while the absence of wind in peak hours triggers the activation of costly

marginal cost gas producers, the lack of wind in offpeak hours can be replaced

with other lower cost coal or cheaper gas idle available producers.

Table 6: Difference in left vs. right tail index estimate by solar output level

Solar Selected All hours Peak hours Offpeak hours

category threshold Left Both Right Left Both Right Left Both Right

tail at 10% 0,23 0,20 0,24 n.a. 0,10 0,19 0,38 0,32 0,20

se at 10% 0,000 0,000 0,000 n.a. 0,000 0,000 0,000 0,000 0,000

(t-statistic) (-31,62***) n.a. (454,31***)

Low Solar tail at 15% 0,21 0,25 0,26 0,09 0,17 0,24 0,36 0,32 0,18

(0-2.2%) se at 15% 0,004 0,001 0,002 0,012 0,025 0,002 0,001 0,001 0,012

(t-statistic) (-11,63***) (-12,97***) (14,56***)

tail at 20% 0,25 0,26 0,24 0,17 0,22 0,26 0,32 0,31 0,17

se at 20% 0,015 0,006 0,022 0,022 0,022 0,010 0,004 0,003 0,028

(t-statistic) (0,33) (-3,49***) (5,19***)

tail at 10% 0,27 0,30 0,31 0,08 0,22 0,33 0,44 0,34 0,17

se at 10% 0,000 0,000 0,000 0,050 0,000 0,000 0,000 0,000 0,000

(t-statistic) (-124,64***) (-5,16***) (482,25***)

Med Solar tail at 15% 0,25 0,32 0,26 0,11 0,25 0,32 0,35 0,36 0,17

(2.2-6.7%) se at 15% 0,002 0,001 0,002 0,081 0,001 0,001 0,001 0,001 0,042

(t-statistic) (-5,18***) (-2,56**) (4,28***)

tail at 20% 0,28 0,32 0,22 0,15 0,24 0,29 0,34 0,36 0,14

se at 20% 0,006 0,003 0,080 0,019 0,011 0,006 0,003 0,002 0,028

(t-statistic) (0,74) (-6,8***) (7,45***)

tail at 10% 0,24 0,19 0,10 0,33 0,23 0,12 0,11 0,08 0,04

se at 10% 0,000 0,000 0,080 0,000 0,000 0,004 0,008 0,011 0,010

(t-statistic) (1,77*) (47,78***) (5,92***)

High Solar tail at 15% 0,23 0,20 0,18 0,28 0,22 0,15 0,14 0,11 0,10

(6.7-20.9%) se at 15% 0,002 0,002 0,013 0,001 0,002 0,185 0,040 0,006 0,018

(t-statistic) (3,63***) (0,68) (1,01)

tail at 20% 0,21 0,21 0,19 0,26 0,22 0,16 0,18 0,13 0,11

se at 20% 0,011 0,144 0,038 0,010 0,040 0,027 0,012 0,020 0,010

(t-statistic) (0,66) (3,39***) (4,87***)

Significant at p***<0,01, p**<0,05, p*<0,1; tail = tail index estimate; se = standard errors

Overall, the impact of wind output on electricity prices is higher on the left

tail than on the right tail of electricity distribution function. This can be ex-

plained as before through the fact that there is more flexibility in the system

to increase production than to decrease production by coal plants. We like to
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mention that these results are robust across the three selected tail thresholds

10%, 15% and 20% showing the fact that there is not much sensitivity towards

the selected threshold. The patterns indicated above, are present at each of the

three selected tail observations thresholds.

Table 7: Difference in high vs low solar output tail index at left and right tail

Selected Selected All hours Peak hours Offpeak hours

tail threshold High Low High Low High Low

tail at 10% 0,24 0,23 0,33 n.a. 0,11 0,38

se at 10% 0,000 0,000 0,000 n.a. 0,008 0,000

(t-statistic) (31,78***) n.a. (-34,02***)

tail at 15% 0,23 0,21 0,28 0,09 0,14 0,36

Left tail se at 15% 0,002 0,004 0,001 0,012 0,040 0,001

(t-statistic) (4,38***) (15,8***) (-5,47***)

tail at 20% 0,21 0,25 0,26 0,17 0,18 0,32

se at 20% 0,011 0,015 0,010 0,022 0,012 0,004

(t-statistic) (-1,67*) (3,44***) (-10,79***)

tail at 10% 0,19 0,20 0,23 0,10 0,08 0,32

se at 10% 0,000 0,000 0,000 0,007 0,011 0,000

(t-statistic) (-42,35***) (18,56***) (-22,35***)

tail at 15% 0,20 0,25 0,22 0,17 0,11 0,32

Both tails se at 15% 0,002 0,001 0,002 0,025 0,006 0,001

(t-statistic) (-17,26***) (2,32**) (-32,53***)

tail at 20% 0,21 0,26 0,22 0,22 0,13 0,31

se at 20% 0,144 0,006 0,040 0,022 0,020 0,003

(t-statistic) (-0,36) (0,1) (-9,11***)

tail at 10% 0,10 0,24 0,12 0,19 0,04 0,20

se at 10% 0,080 0,000 0,004 0,000 0,010 0,000

(t-statistic) (-1,76*) (-16,51***) (-16,09***)

tail at 15% 0,18 0,26 0,15 0,24 0,10 0,18

Right tail se at 15% 0,013 0,002 0,185 0,002 0,018 0,012

(t-statistic) (-5,92***) (-0,5) (-3,5***)

tail at 20% 0,19 0,24 0,16 0,26 0,11 0,17

se at 20% 0,038 0,022 0,027 0,010 0,010 0,028

(t-statistic) (-1,09) (-3,42***) (-2,21**)

Significant at p***<0,01, p**<0,05, p*<0,1; tail = tail index estimate; se = standard errors

Table 6 and Table 7 show the tail-index estimates for the different solar pen-
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etration sub-samples. The results here are most reliable for peak hours as there

is much less sunshine during off-peak hours (which includes the night hours).

During peak hours, the pattern that we observe for solar output in relation to

tail fatness is the same as when we look into the wind output. On the left tail,

the more solar output we have in the system the fatter the tail and, on the right

tail the opposite effect. The potential explanation behind this result is the same

as for the wind.

Table 8: Difference in left vs. right tail index estimate by intermittent output

Intermittent Selected All hours Peak hours Offpeak hours

category threshold Left Both Right Left Both Right Left Both Right

tail at 10% 0,17 0,27 0,35 0,19 0,32 0,39 0,14 0,17 0,20

se at 10% 0,000 0,000 0,000 0,000 0,000 0,000 0,001 0,000 0,000

Wind and (t-statistic) (-337***) (-460,17***) (-54,62***)

Solar tail at 15% 0,16 0,26 0,36 0,19 0,28 0,31 0,19 0,19 0,19

(0.5-10.5%) se at 15% 0,148 0,001 0,001 0,006 0,001 0,001 0,006 0,004 0,005

(t-statistic) (-1,37) (-19,21***) (0,03)

tail at 20% 0,17 0,25 0,34 0,16 0,25 0,34 0,18 0,19 0,18

se at 20% 0,026 0,008 0,003 0,016 0,008 0,003 0,040 0,007 0,027

(t-statistic) (-6,4***) (-10,73***) (0,11)

tail at 10% 0,09 0,10 0,09 0,05 0,05 0,06 0,11 0,05 0,03

se at 10% 0,030 0,017 0,012 0,008 0,008 0,005 0,037 0,008 0,011

Wind and (t-statistic) (-0,13) (-1,59) (1,95*)

Solar tail at 15% 0,11 0,10 0,11 0,11 0,11 0,11 0,13 0,08 0,03

(10.5-17.4%) se at 15% 0,017 0,039 0,007 0,744 0,011 0,016 0,018 0,006 0,010

(t-statistic) (0,29) (0,01) (4,82***)

tail at 20% 0,13 0,10 0,11 0,12 0,12 0,12 0,13 0,09 0,07

se at 20% 0,007 0,103 0,216 0,055 0,018 0,030 0,022 0,015 0,010

(t-statistic) (0,08) (0,05) (2,56**)

tail at 10% 0,43 0,34 0,03 0,32 0,25 0,06 0,65 0,45 0,05

se at 10% 0,000 0,000 0,008 0,000 0,000 0,014 0,000 0,000 0,062

Wind and (t-statistic) (48,01***) (18,58***) (9,63***)

Solar tail at 15% 0,39 0,29 0,06 0,31 0,21 0,08 0,53 0,38 0,11

(17.4-52.2%) se at 15% 0,001 0,001 0,009 0,001 0,002 0,007 0,001 0,001 0,022

(t-statistic) (37,19***) (33,03***) (19,04***)

tail at 20% 0,37 0,25 0,07 0,25 0,18 0,09 0,48 0,34 0,11

se at 20% 0,003 0,008 0,010 0,014 0,019 0,008 0,002 0,002 0,007

(t-statistic) (29,49***) (9,85***) (49,49***)

Significant at p***<0,01, p**<0,05, p*<0,1; tail = tail index estimate; se = standard errors
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Table 9: Difference in high vs low intermittent output tail index at left and right tail

Selected Selected All hours Peak hours Offpeak hours

tail threshold High Low High Low High Low

tail at 10% 0,43 0,17 0,32 0,19 0,65 0,14

se at 10% 0,000 0,000 0,000 0,000 0,000 0,001

(t-statistic) (480,26***) (295,76***) (481,77***)

tail at 15% 0,39 0,16 0,31 0,19 0,53 0,19

Left tail se at 15% 0,001 0,148 0,001 0,006 0,001 0,006

(t-statistic) (1,58) (18,46***) (53,79***)

tail at 20% 0,37 0,17 0,25 0,16 0,48 0,18

se at 20% 0,003 0,026 0,014 0,016 0,002 0,040

(t-statistic) (7,52***) (4,01***) (7,46***)

tail at 10% 0,34 0,27 0,25 0,32 0,45 0,17

se at 10% 0,000 0,000 0,000 0,000 0,000 0,000

(t-statistic) (355,83***) (-336,56***) (879,36***)

tail at 15% 0,29 0,26 0,21 0,28 0,38 0,19

Both tails se at 15% 0,001 0,001 0,002 0,001 0,001 0,004

(t-statistic) (17,4***) (-29,18***) (49,02***)

tail at 20% 0,25 0,25 0,18 0,25 0,34 0,19

se at 20% 0,008 0,008 0,019 0,008 0,002 0,007

(t-statistic) (-0,1) (-3,63***) (20,04***)

tail at 10% 0,03 0,35 0,06 0,39 0,05 0,20

se at 10% 0,008 0,000 0,014 0,000 0,062 0,000

(t-statistic) (-38,16***) (-23,93***) (-2,39**)

tail at 15% 0,06 0,36 0,08 0,31 0,11 0,19

Right tail se at 15% 0,009 0,001 0,007 0,001 0,022 0,005

(t-statistic) (-33,61***) (-33,72***) (-3,64***)

tail at 20% 0,07 0,34 0,09 0,34 0,11 0,18

se at 20% 0,010 0,003 0,008 0,003 0,007 0,027

(t-statistic) (-26,18***) (-27,75***) (-2,48**)

Significant at p***<0,01, p**<0,05, p*<0,1; tail = tail index estimate; se = standard errors
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Table 8 and Table 9 show the tail-index estimates for the combined wind

and solar samples. The aforementioned results show that both solar and wind

outputs have the same impact on the tails of the distribution functions of elec-

tricity prices in Germany. This indicates that solar and wind effect on tail-index

estimates is complementary. Creating intermittent output sub-samples helps us

obtaining a much more clear picture on how wind and solar output impacts the

tail-index estimates of electricity prices. In Table 8 and Table 9 we can observe

clearly the same patterns as before: the tail-index of the left tail increases with

the share of intermittent renewables in the system and the right tail-index de-

creases respectively. These results hold at each level analyzed (all hours, peak

hours and offpeak hours).

For the high and low intermittent sub-samples, the results are very similar

to the ones obtained for the wind output. This outcome is not surprising since

wind output (between 0.4 and 50.6% of total power generation) is generally

much higher than the solar output (between 0 and 20.9% of total power genera-

tion) and, therefore, has a higher influence on the results. Besides reconfirming

the results from the wind sub-samples and solar sub-samples, the intermittent

sub-samples gives us more insights on the transition from a fatter right tail than

left tail to a thinner right tail then left tail with the increasing intermittent out-

put. For the combined intermittent sub-samples, it can be noticed in Table 8

that for all hours and peak hours, when there is a medium level of intermit-

tent supply in the German power system, both left and right tails tend to be

very thin and not significantly different from each other. In offpeak hours with

medium intermittent output, the left tail already becomes significantly fatter

than the right tail. This result indicates that at a level of intermittent supply

between 10.5 to 17.4% in the German power system, the left tail tends to be-

come fatter than the right one during offpeak hours. Results also indicate that

during peak hours a higher level of intermittent output is needed in order to

generate a fatter left tail than right tail of the distribution functions of the Ger-

man electricity prices compared to the output level needed in the offpeak hours
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for having the same effect. This results can be again explained by the differ-

ences between (in)flexibility in the power system during peak and offpeak hours.

4. Conclusion

In addition to the consensus view in the literature that the level of inter-

mittent renewable power supply has an effect on power prices and volatility, we

show that the level of wind and solar supply has an effect on the fatness of the

tails of empirical power price distributions. The more wind and solar supply,

the fatter the tails of the left side of the distribution function and the thinner

the tails on the right side.

New policy measures in the power markets are currently under investigation

with the view to increase power system flexibility, this time also from the de-

mand side through flexible consumers (see for example Kubli et al. (2018)). It

is, however, of crucial importance to first investigate how fundamental factors

such as intermittent renewables, which already constitute a significant part of

the supply mix in Germany, challenge flexibility, and how exactly this varies

over time or different market conditions. Answers to these questions are pro-

vided through empirical evidence in this study. For instance, from our empirical

finding on the tail asymmetry in the distribution of electricity prices, we con-

clude that: 1) the power system has higher need for downward (ramping down)

than for upward (ramping up) power system flexibility during times with high

share of intermittent renewable energy in the power system, particularly during

off-peak hours for the case of wind and during peak hours for the case of solar,

and 2) the opposite (increased need for upward (ramping up) flexibility) dur-

ing times with low share of intermittent renewable energy in the power system,

particularly during peak hours and especially for the case of solar. A better

understanding of the need for power system flexibility is the first step before

actually adopting new measures and designing/updating the energy policy in
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the market.
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González-Pedraz, C., Moreno, M., Peña, J. I., 2014. Tail risk in energy portfolios.

Energy Economics 46, 422–434.
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