## Feasibility of CO<sub>2</sub> conversion to methanol: the case of upgrading a municipal solid waste (MSW) power plant

C. Athanasiou<sup>1,2,\*</sup>, S. Karavasili<sup>1</sup>, G.E. Marnellos<sup>2,3</sup>, S. Papaefthimiou<sup>4</sup> and M. Konsolakis<sup>4</sup>

<sup>1</sup> Department of Environmental Engineering, Democritus University of Thrace, Vas. Sofias 12, 67100 Xanthi, Greece

- <sup>2</sup> CPERI/CERTH, 6 km Charilaou-Thermi road, 57001 Thessaloniki, Greece
- <sup>3</sup> Department of Mechanical Engineering, University of Western Macedonia, Bakola & Salviera, 50100 Kozani, Greece

<sup>4</sup> School of Production Engineering and Management, Technical University of Crete, GR-73100 Chania, Greece

The present work explores the economic feasibility of methanol production from the fluent gases of a MSW mass combustion plant for electricity generation. The overall methodology involves the comparison of the economic performance of the MSW-to-methanol integrated plant with that of the initial MSW-to-electricity installation, which was studied elsewhere [1]. The flow-diagram of the integrated MSW-to-MeOH plant and its main capacity features is depicted in Fig. 1. The integrated plant consists of the initial MSW-to-power plant and the operationally conjoined MeOH synthesis one. The power plant refers to a commercial technology applied for the MSW capacity (400 ktn/yr) of Eastern Macedonia & Thrace region, the composition of which were recently studied [2].

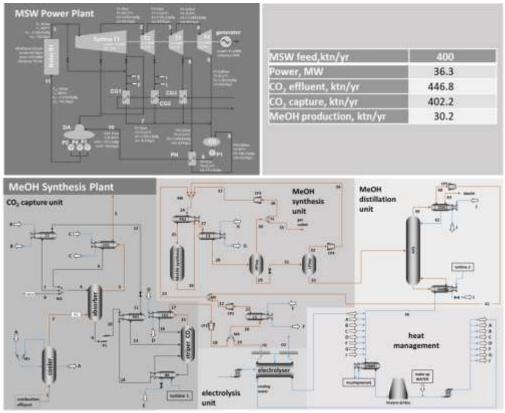
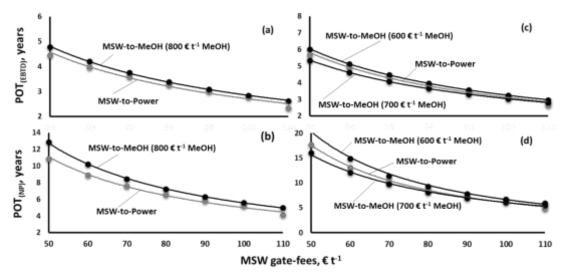



Figure 1. The integrated MSW-to-MeOH plant and its main operational characteristics.

|                         | CAPEX  | OPEX |                         | CAPEX  | OPEX  |
|-------------------------|--------|------|-------------------------|--------|-------|
| Power Plant             | 197,80 | 7,62 | MeOH synthesis          | 19,91  | 7,23  |
| Electrolysis            | 5,65   | 0,09 | <b>MeOH distilation</b> | 3,16   |       |
| CO <sub>2</sub> capture | 6,09   | _    | total                   | 232,61 | 14,94 |


The power available for electrolysis is 32.6 MW and generates H<sub>2</sub>, which is sufficient for the 90 % of the effluent CO<sub>2</sub>. CO<sub>2</sub> is captured by mono-ethanolamine (MEA) [3]. The electrolyzer consumes 4,50 kWh/m<sup>3</sup> H<sub>2</sub> [4], and a CO<sub>2</sub>/H<sub>2</sub> = 3.28 mixture is fed to the MeOH synthesis reactor. After consecutive separations and recycling, the overall CO<sub>2</sub>/H<sub>2</sub> conversions were almost 100 % [5]. The initial capital (CAPEX) and annual operating (expenditure OPEX) costs were calculated according to literature [6-8].

4<sup>th</sup> Annual Symposium, Hellenic Association of Energy Economics (HAEE) Athens, May 6-8, 2019.



The corresponding CAPEXs and OPEXs for each sub-system are shown in Table 1.

The feasibility assessment was based on the comparison of MSW-to-MeOH financial perspectives to those of the MSW-to-Power plant [1], regarding MSW gate-fees between 50 and  $110 \notin$ /tn. Figure 2 shows the variation of payout time (POT) on earnings before taxes and depreciation (EBTD) and on net profits (NP), with or without the subsidization for renewable electricity installations.



**Figure2.** POT for selected methanol ex-factory prices, with (a and b) and without renewable electricity subsidization (c and d) - grey curves refer to the MSW-to-Power plant.

Figure 2 shows that for subsidized renewable electricity (a and b) the feasibility of MSW-to-MeOH becomes comparable to the MSW-to-Power, for MeOH price at 800  $\notin$ /tn. For this price, the POT drops to 3 years on EBTD and to 6 years on NP, for 90  $\notin$ /tn gate-fees. Taking the subsidization of renewable electricity out of the account the feasibility of MSW-to-MeOH becomes comparable to MSW-to-power for 650  $\notin$ /tn MeOH price. This price corresponds to 45  $\notin$ /MWh of methanol's heating value, which is lower compared to oil (52 – 96  $\notin$ /MWh, in the last decade, not taking into account distillation margins). Thus, methanol from MSW can be a competitive fuel, provided its subsidization through MSW treatment gate-fees as well as the subsidization of its renewability accordingly to the current subsidization of the renewable energy fraction from MSW-to-power plants.

## Acknowledgments

Research co-financed by the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH – CREATE – INNOVATE (project code: T1EDK-00094).

## References

- [1] Athanasiou C. et al "Feasibility analysis of municipal solid waste mass burning in the Region of East Macedonia Thrace in Greece", Waste Management & Research 33 (2015) 561.
- [2] Komilis D. et al "Revising the elemental composition and the calorific value of the organic fraction of municipal solid wastes." Waste Management 32 (2012) 372.
- [3] Songolzadeh M. et al "Carbon Dioxide Separation from Flue Gases: A Technological Review Emphasizing Reduction in Greenhouse Gas Emissions" the Scientific World Journal (2014)
- [4] Sunde S. "Water electrolysis technology concepts and performance" SUSHGEN Spring School "Fuel Cells and Hydrogen Technology", 2012.
- [5] Bertau M. et al "Methanol: The Basic Chemical and Energy Feedstock of the Future" Springer 978-3-642-39708-0 (2014)
- [6] Tsilemou K., Panagiotakopoulos D. "Approximate cost functions for solid waste treatment facilities", Waste Management & Research 24 (2006) 310.
- [7] Romeo L. et al "Integration of power plant and amine scrubbing to reduce CO<sub>2</sub> capture costs" App Therm Eng 28 (2008) 1039.
- [8] van der Made A. et al "Technical and economic evaluation of ANTECY solar fuels process" Design Study Report, ANTECY, 2015.

4<sup>th</sup> Annual Symposium, Hellenic Association of Energy Economics (HAEE) Athens, May 6-8, 2019.

