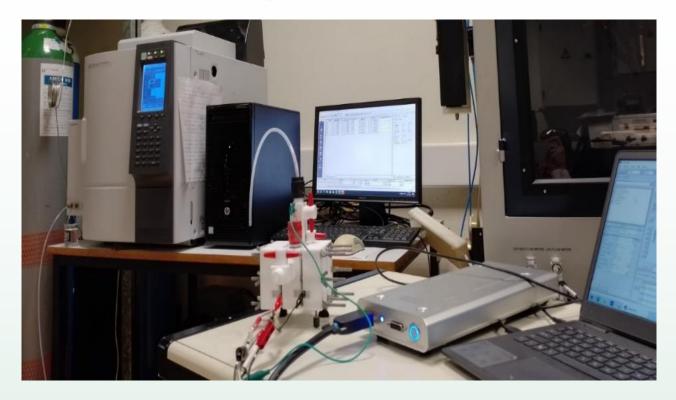
<u>Magnetically Aided alkaline Seawater</u> <u>Electrolysis with Revolutionary products</u> -MASER-

REENDECO PC, Athens March 2024


The main novel and inventive steps 1. The cell

- Use of electrodes having inside them properly oriented permanent magnets to enhance the Lorentz force effect to accelerate cations upwards (to enhance hydrogen productivity) and further push anions downwards to enhance the quality of the electrolysis by product
- After several experiments, the alloy INCONEL 625 was found to be suitable for electrolysis, suffering an absolute minimum corrosion and erosion, as well as **enhancing the catalytic behaviour** during direct seawater electrolysis
- The process does not use membranes, allowing for ambient pressure operation of our direct seawater electrolysis.

The main novel and inventive steps 2. The method

The method of hydrogen production is realized in two steps: at first, the first electrolytic cell produces hydrogen and NaOH, **allowing self-production for of NaOH in the desired concentration**. The second electrolytic cell uses the by-product of the first electrolytic cell, **producing hydrogen with less energy consumption**, namely 44-47 kWh/kgH₂ instead of 53-56 kWh/kgH₂. Then, the by-product of the second cell is enhanced by the produced Cl₂ **resulting in ClO₂ sweater solution**, which is a better disinfectant for ballast water treatment than NaClO, the rather classic ballast water treating solution.

Initial experiments – GC

Experiments were conducted in the above custom-made seawater electrolysis cell. Hydrogen production was monitored by GC, under the same potential values (-1.95V, -2.1V) for all seawater solutions. NaOH enhancement was tested for 4%, 10%, 20%, 30% & 40% wt. The effect of magnetic field was also examined and evaluated.

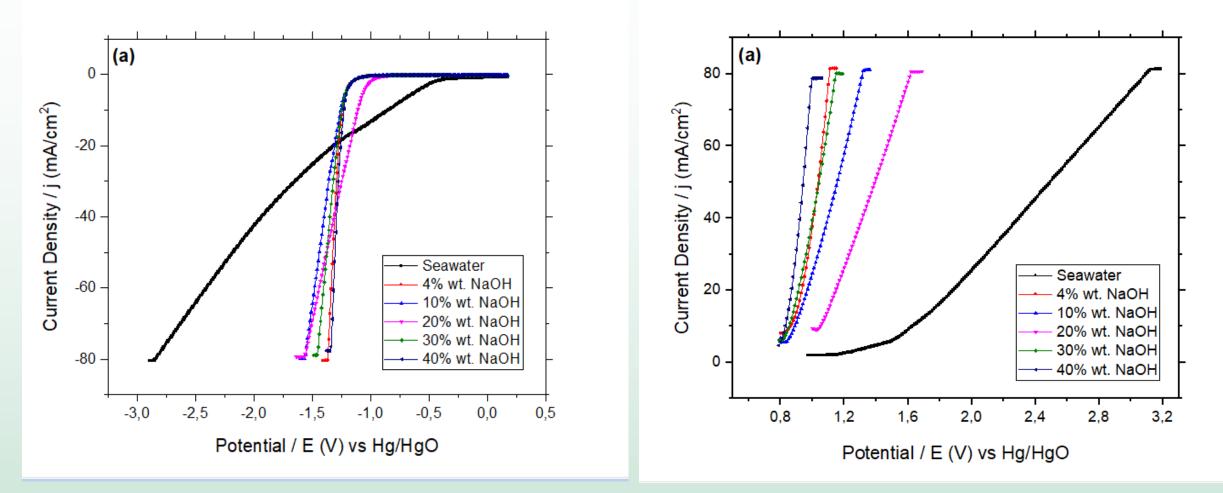
GC Results

Comparison of all the solutions at the same potential									
Concentration of NaOH in seawater solution (w/v)	Average Current / I (A)	Potential / E (V)	Average ppm H2	Average ppm O2	Potential vs Hg/HgO	mg H2	mg O2	Wh	kWh/kg H2 vs Hg/HgO
4% NaOH	-0,98	-1,95	421486	295241	-1,78	1,52	16,9	0,058147	38,3
10% NaOH	-1,23	-1,95	426112	309100	-1,78	1,53	17,7	0,073141	47,8
20% NaOH	-1,25	-1,95	430146	302424	-1,78	1,55	17,3	0,07417	47,9
30% NaOH	-1,23	-1,95	429800	258209	-1,78	1,55	14,8	0,07298	47,2
40% NaOH	-1,17	-1,95	445477	284242	-1,78	1,60	16,2	0,06942	43,3

- Almost stable hydrogen production per time frame: 1.50 mg 1.60 mg
- Lower energy consumption at 4% wt. NaOH in seawater solution
- Highest hydrogen production at 40% wt. NaOH in seawater solution

Cyclic Voltammetry for field evaluation

Cyclic Voltammetry at 100 mV/s

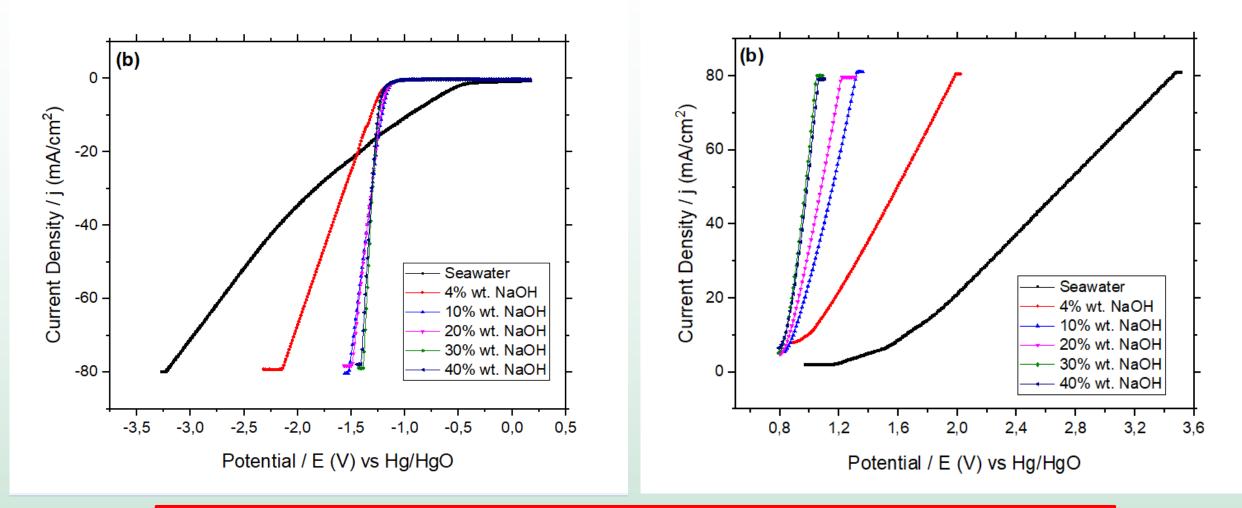

Experiments were conducted in beaker. Cyclic voltammetry scans measured for all the solutions in the absence and presence of magnetic field (MF).

Typical Beaker Experiments to observe the field effect

Absence of magnetic field

Comparison for H₂ production

Comparison for O2 and Cl2 production

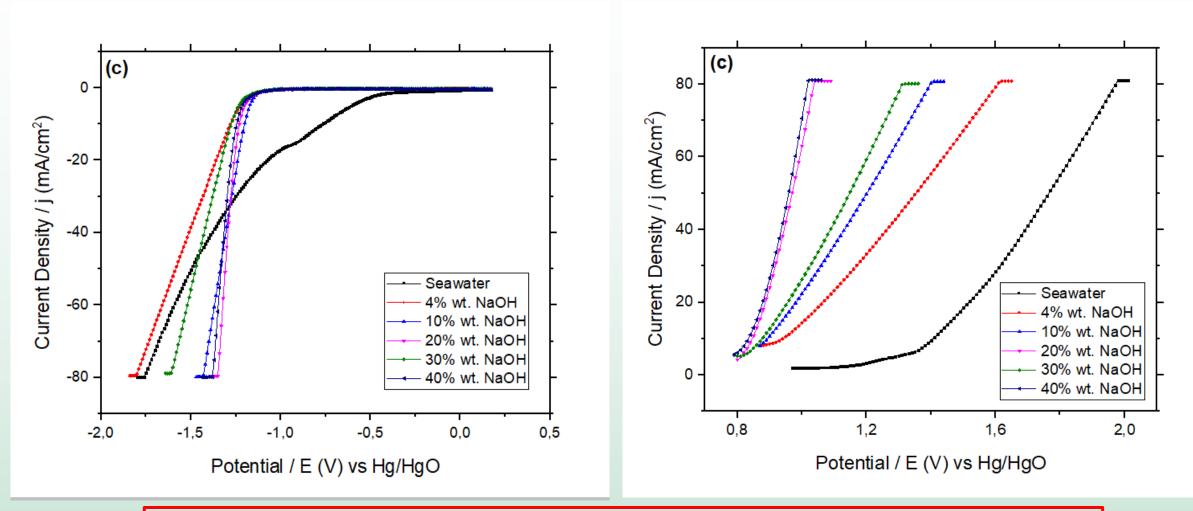

Better performance for HER, OER and CER at 40% and 4% wt. NaOH in seawater

Typical Beaker Experiments to observe the field effect

Small gradient field configuration

Comparison all solutions for HER

Comparison of all solutions for OER and CER


Better performance for HER, OER and CER 30% and 40% wt. NaOH in seawater

Typical Beaker Experiments to observe the field effect

High field Gradient

Comparison of all solutions for HER

Comparison of all solutions for OER and CER

Better performance for HER, OER and CER 20% and 40% wt. NaOH in seawater

Conclusions

- Hydrogen production is acceptable for 4% salinity and for Greek seawater (3,4%)
- Hydrogen production is optimized for 40% NaOH
- The production of O₂ and Cl₂ is controllable
- Cl₂ and ClO₂ solution may be produced intrinsically during the second electrolysis stage
- Low power consumption (43-47 kWh/kgH₂) has been achieved
- In-seawater CO₂ is trapped and transformed to CaCO₃ (continuous CO₂ reduction)
- The production can be realized at the seaside to use both products for maritime
- →Two stage electrolysis is preferred for enhanced hydrogen production
- → The final by product is useful and valuable disinfectant

Suggested methods of storage: methanation, ammonia and methanol production